Skip to main content

Bias-Corrected Diagonal Discriminant Rules for High-Dimensional Classification

Buy Article:

$43.00 plus tax (Refund Policy)


Diagonal discriminant rules have been successfully used for high-dimensional classification problems, but suffer from the serious drawback of biased discriminant scores. In this article, we propose improved diagonal discriminant rules with bias-corrected discriminant scores for high-dimensional classification. We show that the proposed discriminant scores dominate the standard ones under the quadratic loss function. Analytical results on why the bias-corrected rules can potentially improve the predication accuracy are also provided. Finally, we demonstrate the improvement of the proposed rules over the original ones through extensive simulation studies and real case studies.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Bias correction; Diagonal discriminant analysis; Discriminant score; Large p small n; Tumor classification

Document Type: Research Article

Publication date: 2010-12-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more