Skip to main content

Robust Clustering Using Exponential Power Mixtures

Buy Article:

$43.00 plus tax (Refund Policy)


Clustering is a widely used method in extracting useful information from gene expression data, where unknown correlation structures in genes are believed to persist even after normalization. Such correlation structures pose a great challenge on the conventional clustering methods, such as the Gaussian mixture (GM) model, k-means (KM), and partitioning around medoids (PAM), which are not robust against general dependence within data. Here we use the exponential power mixture model to increase the robustness of clustering against general dependence and nonnormality of the data. An expectation–conditional maximization algorithm is developed to calculate the maximum likelihood estimators (MLEs) of the unknown parameters in these mixtures. The Bayesian information criterion is then employed to determine the numbers of components of the mixture. The MLEs are shown to be consistent under sparse dependence. Our numerical results indicate that the proposed procedure outperforms GM, KM, and PAM when there are strong correlations or non-Gaussian components in the data.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Expectation–conditional maximization algorithm; Exponential power mixtures; General dependence; Model-based clustering; Sparse correlations

Document Type: Research Article

Publication date: 2010-12-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more