Skip to main content

Model for Heterogeneous Random Networks Using Continuous Latent Variables and an Application to a Tree–Fungus Network

Buy Article:

$43.00 plus tax (Refund Policy)

Summary. 

The mixture model is a method of choice for modeling heterogeneous random graphs, because it contains most of the known structures of heterogeneity: hubs, hierarchical structures, or community structure. One of the weaknesses of mixture models on random graphs is that, at the present time, there is no computationally feasible estimation method that is completely satisfying from a theoretical point of view. Moreover, mixture models assume that each vertex pertains to one group, so there is no place for vertices being at intermediate positions. The model proposed in this article is a grade of membership model for heterogeneous random graphs, which assumes that each vertex is a mixture of extremal hypothetical vertices. The connectivity properties of each vertex are deduced from those of the extreme vertices. In this new model, the vector of weights of each vertex are fixed continuous parameters. A model with a vector of parameters for each vertex is tractable because the number of observations is proportional to the square of the number of vertices of the network. The estimation of the parameters is given by the maximum likelihood procedure. The model is used to elucidate some of the processes shaping the heterogeneous structure of a well-resolved network of host/parasite interactions.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Keywords: Ecological network; Grade of membership model; Heterogeneous random graph; Maximum likelihood; Mixture model

Document Type: Research Article

Affiliations: 1: University Paris X, Nanterre, France 2: UMR1202 INRA/University Bordeaux I BioGeCo, Bordeaux, France

Publication date: 2010-12-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more