Skip to main content

On Combining Family-Based and Population-Based Case–Control Data in Association Studies

Buy Article:

$43.00 plus tax (Refund Policy)

Summary. 

Combining data collected from different sources can potentially enhance statistical efficiency in estimating effects of environmental or genetic factors or gene–environment interactions. However, combining data across studies becomes complicated when data are collected under different study designs, such as family-based and unrelated individual-based case–control design. In this article, we describe likelihood-based approaches that permit the joint estimation of covariate effects on disease risk under study designs that include cases, relatives of cases, and unrelated individuals. Our methods accommodate familial residual correlation and a variety of ascertainment schemes. Extensive simulation experiments demonstrate that the proposed methods for estimation and inference perform well in realistic settings. Efficiencies of different designs are contrasted in the simulation. We applied the methods to data from the Colorectal Cancer Family Registry.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Conditional likelihood; Family studies; Outcome-dependent sampling; Population-based case–control

Document Type: Research Article

Affiliations: 1: Biostatistics and Biomathematics Program, Fred Hutchinson Cancer Research Center, Fairview Avenue North, M2-B500, Seattle, Washington 98109, U.S.A. 2: Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, U.S.A.

Publication date: 2010-12-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more