Skip to main content

Sensitivity Analysis for m-Estimates, Tests, and Confidence Intervals in Matched Observational Studies

Buy Article:

$43.00 plus tax (Refund Policy)


Huber's m-estimates use an estimating equation in which observations are permitted a controlled level of influence. The family of m-estimates includes least squares and maximum likelihood, but typical applications give extreme observations limited weight. Maritz proposed methods of exact and approximate permutation inference for m-tests, confidence intervals, and estimators, which can be derived from random assignment of paired subjects to treatment or control. In contrast, in observational studies, where treatments are not randomly assigned, subjects matched for observed covariates may differ in terms of unobserved covariates, so differing outcomes may not be treatment effects. In observational studies, a method of sensitivity analysis is developed for m-tests, m-intervals, and m-estimates: it shows the extent to which inferences would be altered by biases of various magnitudes due to nonrandom treatment assignment. The method is developed for both matched pairs, with one treated subject matched to one control, and for matched sets, with one treated subject matched to one or more controls. The method is illustrated using two studies: (i) a paired study of damage to DNA from exposure to chromium and nickel and (ii) a study with one or two matched controls comparing side effects of two drug regimes to treat tuberculosis. The approach yields sensitivity analyses for: (i) m-tests with Huber's weight function and other robust weight functions, (ii) the permutational t-test which uses the observations directly, and (iii) various other procedures such as the sign test, Noether's test, and the permutation distribution of the efficient score test for a location family of distributions. Permutation inference with covariance adjustment is briefly discussed.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Keywords: Noether's estimate; Permutation test; Randomization test; m-estimate

Document Type: Research Article

Affiliations: Department of Statistics, University of Pennsylvania, 473 Huntsman Hall, Philadelphia, Pennsylvania 19104-6340, U.S.A., Email: [email protected]

Publication date: 2007-06-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more