Nonparametric Estimation of the Joint Distribution of a Survival Time Subject to Interval Censoring and a Continuous Mark Variable

Authors: Hudgens, Michael G.; Maathuis, Marloes H.; Gilbert, Peter B.

Source: Biometrics, Volume 63, Number 2, June 2007 , pp. 372-380(9)

Publisher: Wiley-Blackwell

Buy & download fulltext article:


Price: $48.00 plus tax (Refund Policy)



This article considers three nonparametric estimators of the joint distribution function for a survival time and a continuous mark variable when the survival time is interval censored and the mark variable may be missing for interval-censored observations. Finite and large sample properties are described for the nonparametric maximum likelihood estimator (NPMLE) as well as estimators based on midpoint imputation (MIDMLE) and coarsening the mark variable (CMLE). The estimators are compared using data from a simulation study and a recent phase III HIV vaccine efficacy trial where the survival time is the time from enrollment to infection and the mark variable is the genetic distance from the infecting HIV sequence to the HIV sequence in the vaccine. Theoretical and empirical evidence are presented indicating the NPMLE and MIDMLE are inconsistent. Conversely, the CMLE is shown to be consistent in general and thus is preferred.

Keywords: Continuous mark; HIV vaccine trials; Inconsistency; Interval censoring; Nonparametric maximum likelihood

Document Type: Research Article


Affiliations: Department of Statistics, University of Washington, Seattle, Washington 98195, U.S.A.

Publication date: June 1, 2007

Related content



Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content

Text size:

A | A | A | A
Share this item with others: These icons link to social bookmarking sites where readers can share and discover new web pages. print icon Print this page