Skip to main content

Marginalized Models for Moderate to Long Series of Longitudinal Binary Response Data

Buy Article:

$43.00 plus tax (Refund Policy)


Marginalized models ( Heagerty, 1999, Biometrics55, 688–698) permit likelihood-based inference when interest lies in marginal regression models for longitudinal binary response data. Two such models are the marginalized transition and marginalized latent variable models. The former captures within-subject serial dependence among repeated measurements with transition model terms while the latter assumes exchangeable or nondiminishing response dependence using random intercepts. In this article, we extend the class of marginalized models by proposing a single unifying model that describes both serial and long-range dependence. This model will be particularly useful in longitudinal analyses with a moderate to large number of repeated measurements per subject, where both serial and exchangeable forms of response correlation can be identified. We describe maximum likelihood and Bayesian approaches toward parameter estimation and inference, and we study the large sample operating characteristics under two types of dependence model misspecification. Data from the Madras Longitudinal Schizophrenia Study ( Thara et al., 1994, Acta Psychiatrica Scandinavica90, 329–336) are analyzed.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Binary data; Longitudinal data analysis; Marginal models; Marginalized models; Time-dependent covariates

Document Type: Research Article

Affiliations: 1: Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, U.S.A., Email: [email protected] 2: Department of Biostatistics, University of Washington, Seattle, Washington 98195, U.S.A.

Publication date: 2007-06-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more