Skip to main content

Smooth Random Effects Distribution in a Linear Mixed Model

Buy Article:

$51.00 plus tax (Refund Policy)



A linear mixed model with a smooth random effects density is proposed. A similar approach to P-spline smoothing of Eilers and Marx (1996, Statistical Science11, 89–121) is applied to yield a more flexible estimate of the random effects density. Our approach differs from theirs in that the B-spline basis functions are replaced by approximating Gaussian densities. Fitting the model involves maximizing a penalized marginal likelihood. The best penalty parameters minimize Akaike's Information Criterion employing Gray's (1992, Journal of the American Statistical Association87, 942–951) results. Although our method is applicable to any dimensions of the random effects structure, in this article the two-dimensional case is explored. Our methodology is conceptually simple, and it is relatively easy to fit in practice and is applied to the cholesterol data first analyzed by Zhang and Davidian (2001, Biometrics57, 795–802). A simulation study shows that our approach yields almost unbiased estimates of the regression and the smoothing parameters in small sample settings. Consistency of the estimates is shown in a particular case.

Keywords: P-splines; Penalized Gaussian mixture; Smooth random effects distribution

Document Type: Research Article


Affiliations: 1: Biostatistical Centre, Catholic University of Leuven, Kapucynenvoer 35, B-3000 Leuven, Belgium 2: Medical Statistics, University of Leiden, 2300 RC Leiden, The Netherlands

Publication date: 2004-12-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more