Skip to main content

Selecting Factors Predictive of Heterogeneity in Multivariate Event Time Data

Buy Article:

$51.00 plus tax (Refund Policy)


In multivariate survival analysis, investigators are often interested in testing for heterogeneity among clusters, both overall and within specific classes. We represent different hypotheses about the heterogeneity structure using a sequence of gamma frailty models, ranging from a null model with no random effects to a full model having random effects for each class. Following a Bayesian approach, we define prior distributions for the frailty variances consisting of mixtures of point masses at zero and inverse-gamma densities. Since frailties with zero variance effectively drop out of the model, this prior allocates probability to each model in the sequence, including the overall null hypothesis of homogeneity. Using a counting process formulation, the conditional posterior distributions of the frailties and proportional hazards regression coefficients have simple forms. Posterior computation proceeds via a data augmentation Gibbs sampling algorithm, a single run of which can be used to obtain model-averaged estimates of the population parameters and posterior model probabilities for testing hypotheses about the heterogeneity structure. The methods are illustrated using data from a lung cancer trial.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Keywords: Gamma frailties; MCMC algorithm; Model averaging; Multivariate survival analysis; Proportional hazards; Random effects; Test for homogeneity; Variable selection

Document Type: Research Article

Publication date: 2004-06-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more