Skip to main content

Latent Pattern Mixture Models for Informative Intermittent Missing Data in Longitudinal Studies

Buy Article:

$43.00 plus tax (Refund Policy)


A frequently encountered problem in longitudinal studies is data that are missing due to missed visits or dropouts. In the statistical literature, interest has primarily focused on monotone missing data (dropout) with much less work on intermittent missing data in which a subject may return after one or more missed visits. Intermittent missing data have broader applicability that can include the frequent situation in which subjects do not have common sets of visit times or they visit at nonprescheduled times. In this article, we propose a latent pattern mixture model (LPMM), where the mixture patterns are formed from latent classes that link the longitudinal response and the missingness process. This allows us to handle arbitrary patterns of missing data embodied by subjects' visit process, and avoids the need to specify the mixture patterns a priori. One assumption of our model is that the missingness process is assumed to be conditionally independent of the longitudinal outcomes given the latent classes. We propose a noniterative approach to assess this key assumption. The LPMM is illustrated with a data set from a health service research study in which homeless people with mental illness were randomized to three different service packages and measures of homelessness were recorded at multiple time points. Our model suggests the presence of four latent classes linking subject visit patterns to homeless outcomes.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Conditional independence assumption; Intermittent missing data; Joint analysis; Latent class; Longitudinal data; Mental health services; Visit process

Document Type: Research Article

Affiliations: Division of Biostatistics, University of California, San Francisco, California 94143, U.S.A.

Publication date: 2004-06-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more