Skip to main content

Parametric Modeling of Reaction Time Experiment Data

Buy Article:

$51.00 plus tax (Refund Policy)

Abstract:

Summary. 

A simple parametric model is proposed for data from a point-process version of a reaction time experiment. It is used to statistically check for the presence and nature of nonlinear inhibition in the eye-brain-hand system, as well as to study the nature of the reaction time delay distribution. The model tells us that, in principle, the second-order intensity estimate can be used to determine whether the experimental subject is systematically observing the first or the second of two flashes transmitted in short succession. Nonparametric estimates of second-order intensity functions are used in conjunction with this model. In particular, the model allows for the computation of good bandwidths for intensity curve estimation. A parametric bootstrap can also be implemented. Our methods are illustrated with 12 runs of data from a real reaction time experiment. It is found that nonlinear inhibition is present in the eye-brain-hand system. However, there are insufficient data to distinguish between log-normality and normality in the reaction time distribution, due partly to confounding with the particular kind of nonlinear inhibition present in the system.

Keywords: Intensity functions; Parametric bootstrap; Point processes

Document Type: Research Article

DOI: http://dx.doi.org/10.1111/1541-0420.00076

Affiliations: 1: Department of Statistical and Actuarial Sciences, University of Western Ontario, London, Ontario, Canada, N6A 5B7 2: Department of Biostatistics, University of Zürich, Sumatrastrasse 30, 8006 Zürich, Switzerland 3: SMART Section, DRDC Toronto, 1133 Sheppard Ave. West, P.O. Box 2000, Toronto, Ontario, Canada, M3M 3B9

Publication date: September 1, 2003

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more