Skip to main content

A New Method for Choosing Sample Size for Confidence Interval–Based Inferences

Buy Article:

$51.00 plus tax (Refund Policy)



Scientists often need to test hypotheses and construct corresponding confidence intervals. In designing a study to test a particular null hypothesis, traditional methods lead to a sample size large enough to provide sufficient statistical power. In contrast, traditional methods based on constructing a confidence interval lead to a sample size likely to control the width of the interval. With either approach, a sample size so large as to waste resources or introduce ethical concerns is undesirable. This work was motivated by the concern that existing sample size methods often make it difficult for scientists to achieve their actual goals. We focus on situations which involve a fixed, unknown scalar parameter representing the true state of nature. The width of the confidence interval is defined as the difference between the (random) upper and lower bounds. An event width is said to occur if the observed confidence interval width is less than a fixed constant chosen a priori. An event validity is said to occur if the parameter of interest is contained between the observed upper and lower confidence interval bounds. An event rejection is said to occur if the confidence interval excludes the null value of the parameter. In our opinion, scientists often implicitly seek to have all three occur: width, validity, and rejection. New results illustrate that neglecting rejection or width (and less so validity) often provides a sample size with a low probability of the simultaneous occurrence of all three events. We recommend considering all three events simultaneously when choosing a criterion for determining a sample size. We provide new theoretical results for any scalar (mean) parameter in a general linear model with Gaussian errors and fixed predictors. Convenient computational forms are included, as well as numerical examples to illustrate our methods.

Keywords: Confidence interval; Power; Rejection; Sample size; Validity; Width

Document Type: Research Article


Affiliations: 1: Bristol-Myers Squibb Pharmaceutical Research Institute, 5 Research Parkway, Wallingford, Connecticut 06492-7660, U.S.A. 2: Department of Biostatistics, University of North Carolina CB 7420 McGavran-Greenberg, Chapel Hill, North Carolina 27599-7420, U.S.A.

Publication date: 2003-09-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more