Skip to main content

Generalized Character Process Models: Estimating the Genetic Basis of Traits That Cannot Be Observed and That Change with Age or Environmental Conditions

Buy Article:

$51.00 plus tax (Refund Policy)



The genetic analysis of characters that change as a function of some independent and continuous variable has received increasing attention in the biological and statistical literature. Previous work in this area has focused on the analysis of normally distributed characters that are directly observed. We propose a framework for the development and specification of models for a quantitative genetic analysis of function-valued characters that are not directly observed, such as genetic variation in age-specific mortality rates or complex threshold characters. We employ a hybrid Markov chain Monte Carlo algorithm involving a Monte Carlo EM algorithm coupled with a Markov chain approximation to the likelihood, which is quite robust and provides accurate estimates of the parameters in our models. The methods are investigated using simulated data and are applied to a large data set measuring mortality rates in the fruit fly, Drosophila melanogaster.

Keywords: Age-specific mortality; Character process models; Genetic variation; Infinite dimensional traits; Quantitative genetics; Repeated measures

Document Type: Research Article


Affiliations: 1: Department of Biology, Galton Laboratory, University College London NW1 2HE, U.K., Email: 2: Institute of Animal, Cell, and Population Biology, Edinburgh University, Edinburgh, Scotland

Publication date: March 1, 2002


Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more