Skip to main content

Combining Complete Multivariate Outcomes with Incomplete Covariate Information: A Latent Class Approach

Buy Article:

$43.00 plus tax (Refund Policy)


This work was motivated by the need to combine outcome information from a reference population with risk factor information from a screened subpopulation in a setting where the analytic goal was to study the association between risk factors and multiple binary outcomes. To achieve such an analytic goal, this article proposes a two-stage latent class procedure that first summarizes the commonalities among outcomes using a reference population sample, then analyzes the association between outcomes and risk factors. It develops a pseudo-maximum likelihood approach to estimating model parameters. The performance of the proposed method is evaluated in a simulation study and in an illustrative analysis of data from the Women's Health and Aging Study, a recent investigation of the causes and course of disability in older women. Combining information in the proposed way is found to improve both accuracy and precision in summarizing multiple categorical outcomes, which effectively diminishes ambiguity and bias in making risk factor inferences.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Keywords: Latent variable; Measurement error; Missing covariate; Mixture model; Multivariate categorical data; Pseudo-maximum likelihood; Screening program

Document Type: Research Article

Affiliations: 1: Department of Epidemiology, The Johns Hopkins University, 2024 E. Monument Street, Suite 2-904, Baltimore, Maryland 21205, U.S.A., Email: [email protected] 2: Department of Biostatistics, The Johns Hopkins University, 615 N. Wolfe Street, Baltimore, Maryland 21205, U.S.A.

Publication date: 2002-03-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more