Skip to main content

Electrostatically Templated Self‐Assembly of Polymeric Particles: The Role of Friction and Shape Complementarity

Buy Article:

$51.00 plus tax (Refund Policy)


Conductive electrodes held at kV potentials and patterned with non‐conductive circular islands can drive templated self‐assembly (TSA) of millimeter‐sized polymeric particles. It is found, however, that the complementarity of the shapes of the “capturing” islands and the projected shapes of the “adsorbing” particles is insufficient to produce high quality assemblies. For instance, while spherical particles center onto circular islands and form highly regular arrays, disk‐shaped particles remain off‐centered on the same islands. These effects are due to frictional effects that compete with electrostatic forces during TSA. A finite‐element model is used to quantify the forces acting in the system and suggests heuristic rules that guide the design of islands capturing particles of desired shapes and sizes.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Document Type: Research Article

Affiliations: Department of Chemical and Biological Engineering and Department of Chemistry Northwestern University 2145 Sheridan Rd./Tech E136, Evanston, IL 60208, USA

Publication date: 2011-12-20

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more