Skip to main content

The Effect of Methyl Functionalization on Microporous Metal‐Organic Frameworks' Capacity and Binding Energy for Carbon Dioxide Adsorption

Buy Article:

$51.00 plus tax (Refund Policy)

Abstract:

Abstract

The design, synthesis, and structural characterization of two new microporous metal‐organic framework (MMOF) structures is reported; Zn(BDC)(DMBPY)0.5·(DMF)0.5(H2O)0.5 (1; H2 BDC = 1,4‐benzenedicarboxylic acid; DMBPY=2,2′‐dimethyl‐4,4′‐bipyridine) and Zn(NDC)(DMBPY)0.5·(DMF)2 (2; H2NDC = 2,6‐naphthalenedicarboxylic acid, DMF=N,N,‐dimethylformamide), which are obtained by functionalizing a pillar ligand with methyl groups. Both compounds are 3D porous structures of the Zn2(L)2(P) type and are made of a paddle‐wheel Zn2(COO)4 secondary building unit (SBU), with the dicarboxylate and DMBPY as linker (L) and pillar (P) ligands, respectively. Comparisons are made to the parent structures Zn(BDC)(BPY)0.5·(DMF)0.5(H2O)0.5 (3; BPY = 4,4′‐bipyridine) and Zn(NDC)(BPY)0.5·(DMF)1.575 (4) to analyze and understand the effect of methyl functionalization. CO2‐adsorption studies indicate substantially enhanced isosteric heats of CO2 adsorption (Q st) for both compounds, as a result of adding methyl groups to the BPY ligand. The CO2 uptake capacity, however, is affected by two opposing and competing factors: the enhancement due to increased MMOF–CO2 interactions (higher Q st values) and detraction due to the surface area and pore‐volume reduction. For 1′ (the guest‐free form of 1), the positive effect dominates, which leads to a significantly higher uptake of CO2 than that of its parent structure 3′ (the guest‐free form of 3). In 2′ (the guest‐free form of 2), however, the negative effect rules, which results in a slightly lower CO2 uptake with respect to 4′ (the guest‐free form of 4). All four compounds exhibit a relatively high separation capability for carbon dioxide over other small gases, including CH4, N2, and O2. The separation ratios of CO2 to O2 and N2 (at 298 K and 1 atm) are 39.8 and 23.5 for compound 1′, 57.7 and 40.2 for 2′, 25.7 and 29.5 for 3′, 89.7, and 20.3 for 4′, respectively. IR and Raman spectroscopic characterization of CO2 interactions with 1′ and 2′ provides indirect support of the importance of the methyl groups in the interaction of CO2 within these systems.

Document Type: Research Article

DOI: http://dx.doi.org/10.1002/adfm.201101479

Affiliations: 1: Institute of Functional Molecules, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 51064, P. R. China 2: Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA 3: Department of Materials Science & Engineering, University of Texas at Dallas, Richardson, TX 75080, USA

Publication date: December 20, 2011

bpl/adfm/2011/00000021/00000024/art00024
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more