Skip to main content

Controlling Polarization Dependent Reactions to Fabricate Multi‐Component Functional Nanostructures

Buy Article:

$51.00 plus tax (Refund Policy)



In spite of novel lithographic processes that enable new approaches to fabricating materials, directed assembly of multi‐component hybrid devices remains a challenge. Ferroelectric nanolithography exploits polarization dependent surface interactions to pattern nanoparticles, but the factors that control the particle size and distribution are not sufficiently well understood to produce hybrid nanostructures. Here the effects of photon energy, photon flux, and polarization vector orientation on ferroelectric domain specific photoreactions are quantified, leading to an understanding of the nanoparticle deposition mechanism. Patterned nanoparticle arrays functionalized with optically active porphyrin complexes are configured into optoelectronic devices.

Document Type: Research Article


Affiliations: 1: Department of Materials Science and Engineering, School of Engineering and Applied Sciences, The University of Pennsylvania, 3231 Walnut St, Philadelphia, PA 19104, USA 2: Department of Chemistry, School of Arts and Sciences, The University of Pennsylvania, 231 S. 34 Street, Philadelphia, PA 19104, USA 3: Therien, Department of Chemistry, French Family Science Center, 124 Science Drive, Duke University, Durham, NC 27708-0354, USA

Publication date: 2011-12-20

  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more