Skip to main content

Nanograssed Micropyramidal Architectures for Continuous Dropwise Condensation

Buy Article:

$43.00 plus tax (Refund Policy)


Engineering the dropwise condensation of water on surfaces is critical in a wide range of applications from thermal management (e.g. heat pipes, chip cooling etc.) to water harvesting technologies. Surfaces that enable both efficient droplet nucleation and droplet self‐removal (i.e. droplet departure) are essential to accomplish successful dropwise condensation. However it is extremely challenging to design such surfaces. This is because droplet nucleation requires a wettable surface while droplet departure necessitates a super‐hydrophobic surface. Here we report that these conflicting requirements can be satisfied using a hierarchical (multiscale) nanograssed micropyramid architecture that yield a gobal superhydrophobicity as well as locally wettable nucleation sites, allowing for ˜65% increase in the drop number density and ˜450% increase in the drop self‐removal volume as compared to a superhydrophobic surface with nanostructures alone. Further we find that synergistic co‐operation between the hierarchical structures contributes directly to a continuous process of nucleation, coalescence, departure, and re‐nucleation enabling sustained dropwise condensation over prolonged periods. Exploiting such multiscale coupling effects can open up novel and exciting vistas in surface engineering leading to optimal condensation surfaces for high performance electronics cooling and water condenser systems.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China 2: Department of Mechanical Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China 3: Department of Mechanical Engineering and Department of Materials, Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA

Publication date: 2011-12-20

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more