Skip to main content

Free Content Beyond pollinators: evolution of floral architecture with environment across the wild sunflowers (Helianthus, Asteraceae)

Download Article:
 Download
(PDF 3,769.8 kb)
 
Background – There is a growing appreciation that the evolution of floral traits is shaped by selection not only from pollinators, but also factors like abiotic stress, florivory, and disease. Many such pressures impose counter-selection for smaller, less attractive flowers. In self-incompatible taxa, floral investment in attraction is required to ensure cross-pollination, setting up a potential energetic trade-off with investment in fecundity through pollen and seeds.

Methods – This study assesses ecological and evolutionary causes of variation in floral morphology across the diverse genus Helianthus (Asteraceae), focusing on floral size, colour, water content, and relative investment in attractive but sterile ray florets versus non-showy but fertile disc florets.

Key results – All floral traits were found to be highly evolutionarily labile, and the trade-off in relative investment between ray and disc florets was found to evolve independently of floral size. Both floral size and disc water content were strongly correlated with source site climate and soil characteristics, with larger heads and higher water content repeatedly evolving in more fertile and drier habitats consistent with aspects of the resource-cost and enemy-escape hypotheses of floral trait evolution, respectively. The evolution of disc colour and relative ray-disc investment was not explained by life history, flowering period, or source site environmental characteristics, suggesting that the evolution of these traits may instead be driven by other selective pressures, including perhaps pollinators.

Conclusions – Together the results of this study suggest that the macroevolution of sunflower floral architecture is likely driven by selective pressures from multiple biotic and abiotic factors, with habitat environmental conditions influencing some but not all aspects of floral morphology.

62 References.

2 items.

No Article Media
No Metrics

Keywords: CLIMATE; COLOUR; DISC; ENVIRONMENT; FLOWER; HELIANTHUS; MORPHOLOGY; RAY; SOIL FERTILITY; SUNFLOWER

Document Type: Regular Paper

Publication date: 01 July 2017

More about this publication?
  • Plant Ecology and Evolution (a continuation of Belgian Journal of Botany, incorporating Systematics and Geography of Plants) is an international journal devoted to ecology, phylogenetics and systematics of all 'plant' groups in the traditional sense (including algae, cyanobacteria, fungi, myxomycetes), also covering related fields such as comparative and developmental morphology, conservation biology, ecophysiology, evolution, phytogeography, pollen and spores, population biology, and vegetation studies. It is published by the Royal Botanical Society of Belgium and the Botanic Garden Meise and contains original research papers, review articles, checklists, short communications and book reviews.

  • Editorial Board
  • Submit a Paper
  • Subscribe to this Title
  • Belgian Journal of Botany
  • Systematics and Geography of Plants
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more