Skip to main content

Responsive nanomaterials for engineering asset evaluation and condition monitoring

Buy Article:

$17.00 plus tax (Refund Policy)

Responsive nanomaterials are being developed through interdisciplinary research to improve and evaluate the performance of engineering assets. An overview of the work is given here. Nanomaterials are defined as bulk materials that have nanoparticle components. Responsive materials are defined as having an intrinsic ability to sense their condition and potentially respond when performance of the material is being affected or degraded. Responsive nanomaterials are a new class of material being developed by integrating nanoscale particles into host materials to provide the properties that we want. Nanomaterials can have unique combinations of properties such as a high surface area to volume ratio of the nanophase components, improved stiffness and strength, supercapacitance, electrical conductivity, magnetic properties, lightweight, photonic, and other properties. The focus of this paper is on development of responsive materials based on commercially available nanoscale materials that can be put into applications now. The nanoscale materials considered are carbon nanofibres, carbon nanosphere chains, long carbon nanotubes, and the intermediate products of these materials. Nanoengineering of multifunctional responsive materials is predicted to open up many new opportunities in the field of condition monitoring and asset evaluation, not just for structures, but also for humans, electronics, and the environment. New classes of responsive nanomaterials such as piezoresponsive, magnetoresponsive, photoresponsive, thermoresponsive and others may eventually enable the design of engineering assets that are self-monitoring and partially self-repairable, thus making high technology machines, vehicles, and structures safer for society and safeguarded against misuse.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Carbon nanofibre; carbon nanosphere chain; carbon nanotube; condition monitoring; engineering asset evaluation; responsive nanomaterial

Document Type: Research Article

Affiliations: 1 NANOWORLD and Smart Materials and Devices Lab, University of Cincinnati, Cincinnati, OH 452210072, USA.

Publication date: 2008-08-01

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more