Skip to main content

Monitoring the setting and hardening of early-age mortar using a pulse-echo ultrasonic guided wave approach

Buy Article:

$25.00 plus tax (Refund Policy)


A pulse-echo ultrasonic guided wave approach that monitors the setting and hardening of early-age mortar during the first twenty-four hours of hydration is presented. The method transmits a torsional wave mode on one end of a cylindrical steel rod embedded in mortar and then receives the reflected signals. Both the reflection from the end of the rod and the reflection from the point where the waveguide enters the mortar are monitored. The development of the mortar's mechanical properties is related to both the energy leaked into the surrounding mortar and the energy reflected at the entry point. Experiments were performed on mixtures with varying water-cement ratios (w/c = 0.40, 0.50, and 0.60), chemical admixtures (accelerant and retardant), and mineral admixtures (silica fume and fly ash). The time of setting and compressive strength of the different mortar mixtures was determined in accordance with ASTM standards. The change in signal strength of the end- and entry-reflection of the guided wave appears to be correlated to the setting times and compressive strength of the mortar. The ability of this method to only require access to one side of the specimen makes it attractive for the development of a portable system that monitors early-age cementitious materials in the field.

Document Type: Research Article


Publication date: 2007-04-01

More about this publication?
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more