Skip to main content

Exfoliation detection using structurally integrated piezoelectric ultrasonic transducers

Buy Article:

$25.00 plus tax (Refund Policy)

Abstract:

Advanced sensors and sensor network technologies are shaping the future of civilian and military air platform health assessment and monitoring. In this paper, the feasibility of applying a structurally integrated thick-film piezoelectric ceramic ultrasonic transducer for monitoring exfoliation corrosion damage is investigated. The ultrasonic transducer can easily and reliably be deposited on metallic and polymeric structures using a sol-gel spray approach. The change in material thickness due to exfoliation damage is estimated using ultrasonic time-of-flight measurements. Experimental results from two aluminium (Al.7075-T6511) specimens are presented. In comparison, conventional water-coupled ultrasonic tests were also conducted to generate a thickness map for each selected specimen before the integrated transducers were fabricated. Close correlation was obtained between both conventional and integrated thick-film ultrasonic measurements, demonstrating the effectiveness of the integrated thick-film ultrasonic transducer for exfoliation corrosion damage assessment and monitoring.

Document Type: Research Article

DOI: http://dx.doi.org/10.1784/insi.2006.48.12.738

Publication date: December 1, 2006

More about this publication?
bindt/insight/2006/00000048/00000012/art00007
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more