Skip to main content

An advanced fuzzy pattern recognition architecture for condition monitoring

Buy Article:

$25.00 plus tax (Refund Policy)

Abstract:

An important element of the automatic machining process control function is the on-line monitoring of cutting tool wear and fracture mechanisms. This can ensure machining accuracy and reduce the production costs. This paper presents a knowledge-based intelligent pattern recognition algorithm for tool condition monitoring. Redundant signal features are removed by using a fuzzy clustering feature filter. The fuzzy-driven neural network can carry out the integration and fusion of multi-sensor information effectively. The algorithm has strong learning and noise suppression ability which leads to successful tool wear classification under a range of machining conditions.

Document Type: Research Article

DOI: http://dx.doi.org/10.1784/insi.46.7.409.55572

Affiliations: 1: Department of Measurement Technology and Instrumentation, Faculty of Mechanical Engineering, Southwest Jiao Tong University, Chengdu City, PR China 2: Faculty of Technology, Southampton Institute, East Park Terrace, Southampton SO14 0RD, UK

Publication date: July 1, 2004

More about this publication?
bindt/insight/2004/00000046/00000007/art00007
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more