Skip to main content

Modulators of Voltage-Dependent Calcium Channels for the Treatment of Nervous System Diseases

Buy Article:

$113.00 plus tax (Refund Policy)

Voltage-dependent Ca2+ channels (VDCCs) play important roles in physiological functions and pathological processes of the nervous system. Given that the precise regulation of Ca2+ signaling is important for neuronal processes such as action potential generation, transmitter release, and synaptic plasticity, alterations in Ca2+ current through VDCCs affect the functions of neurons and circuits. Central nervous system (CNS) diseases, including pain, epilepsy, seizure, anxiety, depression, dementia, and stroke, are characterized by an altered balance between excitatory and inhibitory neuronal functions. An efficient way of controlling such diseases is to block or modulate VDCC function. An effective strategy to reduce the likelihood of adverse effects is to develop agents that selectively control the VDCC isoform/subunit involved in the mechanism of the disease in question. This review provides an overview of knowledge on VDCCs, traditional and newly developed therapeutic fields, clinical fields, and the diverse medicinal chemistry of traditional and newly developed VDCC blockers in the CNS based on the scientific and patent literature.





No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Keywords: Voltage-dependent Ca2+ channel; blocker; central nervous system disease; gene-deficient mice; neuronal hyperexcitability disorder; screening; side effect

Document Type: Research Article

Publication date: 2009-06-01

More about this publication?
  • Recent Patents on CNS Drug Discovery publishes review articles on recent patents in the field of CNS drug discovery e.g. novel bioactive compounds, analogs & targets. A selection of important and recent patents on CNS drug discovery is also included in the journal. The journal is essential reading for all researchers involved in CNS drug design and discovery.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more