If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Miglustat: Substrate Reduction Therapy for Lysosomal Storage Disorders Associated with Primary Central Nervous System Involvement

$113.00 plus tax (Refund Policy)

Buy Article:


Difficulties with delivery of functional enzyme to the brain limit the ability to modify neurologic outcome in patients with neuronopathic forms of the lysosomal storage diseases. In a subset of these disorders, which result from a disruption of glycosphingolipid metabolism, the use of a small molecule inhibitor of substrate precursor synthesis may reduce the amount of brain tissue lipid deposition and lead to amelioration of disease. The efficacy of this approach, termed substrate reduction therapy, has been demonstrated in several animal models; with resultant reduction of ganglioside storage in the brain, delayed onset of symptoms and prolonged survival. This pre-clinical 'proof of therapeutic concept' served as the rationale for proceeding with trials in humans using miglustat; an imino-sugar inhibitor of ceramide-specific glucosytransferase (the catalyst for the first committed step in glycosphingolipid synthesis). The glycosphingolipidoses are rare 'orphan' disorders; the limited number of suitable study subjects and the paucity of information on the natural history of these disorders represent major hurdles in the conduct of clinical trials. As treatment potentially constitutes lifelong administration, there will be a need to identify any potential safety considerations attendant to the use of these agents. With greater understanding of disease mechanism, adjunctive therapies may be identified; offering the prospect of modifying these otherwise relentlessly progressive neurodegenerative diseases.

Keywords: GM2-gangliosidosis; Lysosomal storage disorders; Niemann-Pick type C; neurodegenerative disease

Document Type: Research Article

DOI: http://dx.doi.org/10.2174/157488906775245282

Affiliations: Neurogenetics Unit, Department of Neurology and Pediatrics, New York University School of Medicine, New York, NY, USA;

Publication date: January 1, 2006

More about this publication?
  • Recent Patents on CNS Drug Discovery publishes review articles on recent patents in the field of CNS drug discovery e.g. novel bioactive compounds, analogs & targets. A selection of important and recent patents on CNS drug discovery is also included in the journal. The journal is essential reading for all researchers involved in CNS drug design and discovery.
Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more