Skip to main content

Compatibility Study of Merrifield Linker in Fmoc Strategy Peptide Synthesis

Buy Article:

$63.00 plus tax (Refund Policy)

Abstract:

The stability of Merrifield linker in Fmoc deprotection process was quantitatively investigated by establishing working curve of two major decomposition components from two resin bound dipeptide models. By sampling reaction solution and analyzing with RP-HPLC, decomposition rate was determined. The results indicated that either α-amino acid or β-amino acid anchored Merrifield linker was endurable for Fmoc strategy peptide synthesis in common de-Fmoc conditions such as 20% piperidine/DMF and 2% DBU/2% piperidine/DMF under room temperature treatments. However, Fmoc-deprotection with microwave assistance of α-amino acid anchored peptide resin with 20% piperidine/DMF more than 20 times or β-amino acid anchored peptide resin with 2% DBU/2% piperidine/DMF more than 30 times is not recommended. Feasibility of the proposed compatibility was verified by design and synthesis of a thymic humoral factor derived peptide via Fmoc strategy on Merrifield resin. Thus by choosing moderate de-Fmoc protocol, Merrifield resin is feasible for Fmoc strategy oligopeptide synthesis.

Keywords: Fmoc strategy; Merrifield linker; aminolysis; hydrolysis; peptide synthesis

Document Type: Research Article

DOI: https://doi.org/10.2174/092986613804725343

Publication date: 2013-02-01

More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more