Skip to main content

Mutation Studies in the Active Site of β-glycosidase from Pyrococcus furiosus DSM 3638

Buy Article:

$63.00 plus tax (Refund Policy)

Sequence alignments and homology modeling of Pyrococcus furiosus thermostable glycosidase (PFTG) showed that the residue 150 is conserved as tryptophan in β-glycosidase and in other related enzymes such as β- mannosidase and β-galactosidase. To elucidate the relationship between the substrate size and geometric shape of the catalytic site of thermophilic β-glycosidase and category of PFTG, the Q77, Q150 and D206 located at the interface of the dimer were replaced with Trp and Asn. Also, to confirm the role of active sites of PFTG, the Q77R/Q150W double mutant was created through subcloning. Temperature and pH optima of both mutants and native enzyme were same at 100°C and pH 5.0 in sodium citrate buffer, respectively. The catalytic efficiencies (kcat/Km) of the mutants on synthetic and natural substrates by Isothermal Titration Calorimetry were slightly changed, but indicated the characteristics of β-glycosidase activity. Kinetic parameters of the mutant enzymes indicated that they possess characteristics of both β- galactosidase and β-mannosidase activities. Although the mutant enzymes showed similar substrate specificities compared to the recombinant enzyme, they had more affinity (Km) to substrates with low turnover number (kcat).
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: ITC (isothermal titration calorimetry); PFTG (Pyrococcus furiousus thermostable glycosidase); catalytic site; enzyme; glycoside hydrolase; hyperthermostable enzyme; pH; β-galactosidas

Document Type: Research Article

Publication date: 01 January 2013

More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more