Skip to main content

Identification of a Novel Antifungal Peptide with Chitin-Binding Property from Marine Metagenome

Buy Article:

$63.00 plus tax (Refund Policy)

Abstract:

A novel antifungal peptide with 36 amino acids was identified by functional screening of a marine metagenomic library. The peptide did not show similarity with any existing antimicrobial peptide sequences in the databank. The108 bp ORF designated as mmgp1 was cloned and expressed in Escherichia coli BL21 (DE3) using pET expression system. Mass spectrometry analysis of the purified recombinant peptide revealed a molecular mass of 5026.9 Da. The purified recombinant peptide inhibited the growth of Candida albicans and Aspergillus niger. The peptide was predicted to adopt α- helical conformation with an extended coil containing a ligand binding site for N-acetyl-D-glucosamine. The α- helicity of the peptide was demonstrated by circular dichroism spectroscopy in the presence of chitin or membrane mimicking solvent, trifluoroethanol. The chitin binding property of the peptide was also confirmed by fast performance liquid chromatography.

Keywords: DNA; Marine metagenome; antifungal peptide; fungal infections; gene clusters; gene expression; human pathology; infections; purification; systemic fungal; therapeutic agents

Document Type: Research Article

DOI: http://dx.doi.org/10.2174/092986612803521620

Publication date: December 1, 2012

More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.
ben/ppl/2012/00000019/00000012/art00008
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more