If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Inactivation Kinetics of β-N-Acetyl-D-glucosaminidase from Green Crab (Scylla serrata) by Guanidinium Chloride

$63.10 plus tax (Refund Policy)

Buy Article:

Abstract:

β-N-acetyl-D-glucosaminidase (NAGase) is a major member in chitinolytic enzymes system, which plays an important role in the hatching and molting processes of marine organism. The effects of guanidinium chloride (GuHCl) on the activity of NAGase from green crab (Scylla serrata) were investigated in this study. In results, GuHCl causes reversible inactivation of the enzyme at below 0.8 M concentrations, and the IC50 is estimated to be 0.15 M. The relationship between the enzyme activity and conformation was charaterized by monitoring the change of protein fluorescence spectra. With increasing GuHCl concentration, the fluorescence intensity of the enzyme distinctly decreases , and the maximal emission peaks appear red-shifted (from 338 nm to 343 nm). The enzyme inactivation precedes conformational changes, indicating that the enzyme active site is more flexible than the whole enzyme molecule. The result of the kinetics of inactivation shows that the value of k+0 is larger than that of k+0 '. It suggests that the substrate could protect the enzyme to a certain extent during guanidine denaturation. Our results provide important new insights in marine organism culture, especially in crustacean growth.
More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more