Skip to main content

A Novel Approach for Secretion of Heterologous Proteins with Correct N-Terminal Processing by Using α-Factor Pre Sequence in Pichia pastoris

Buy Article:

$63.00 plus tax (Refund Policy)


Numerous proteins have been secreted in P. pastoris by fusing the target gene with α-factor pre-pro sequence at Kex2 endopeptidase cleavage site. However, in some instances the product cannot be correctly processed due to aberrant cleavage by Kex2 endopeptidase such as aprotinin. In this study, an aprotinin gene was cloned into pPIC9K at the signal peptidase cleavage site through a single NheI restriction site designed at the 3'end of the α-factor signal sequence preregion, and transformed into GS115 host cell. By G418 resistance and ELISA assay, a high-yield recombinant was selected. After fed-batch cultivation in a 7-L bioreactor, the product was efficiently secreted into culture medium and accumulated up to ∼ 4.7 mg L-1. MALDI-TOF/MS and N-terminal analyses confirmed its authenticity. Thus, a novel cloning strategy for secretion of aprotinin with correct N-terminal processing in P. pastoris has been developed which can be potentially applied to other proteins.

Keywords: Pichia pastoris; Secretion; α-factor pre-pro sequence

Document Type: Research Article


Publication date: 2012-09-01

More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more