Dynamical Properties of Steric Zipper Polymorphs Formed by a IAPPDerived Peptide

$63.00 plus tax (Refund Policy)

Buy Article:


Understanding the molecular basis of neurodegenerative diseases has enormous implications for the development of effective therapeutic strategies. One of the most puzzling features of these pathologies is the occurrence of distinct strains, which are believed to be generated by alternative conformational transitions of the same protein/peptide. Very recently, it has been discovered that small model peptides are able to form alternative tightly packed assemblies (polymorphs) in the crystalline state. Intriguingly, it has been postulated that the different polymorphs of the same polypeptide sequence may be representative of distinct strains. As the organization of crystalline aggregates of small peptides may be heavily biased by crystal packing, we have here performed MD simulations on steric zipper polymorphs formed by of the IAPP-derived fragment SSTNVG. Our analyses show that these aggregates are rather stable also in a non-crystalline environment. This finding corroborates the hypothesis that steric zipper assemblies are good candidates to account for the phenomenon of strain in neurodegenerative diseases. Present investigations also provide clues on the factors that favour the formation of polymorphs. Indeed, the intrinsic stability of individual β-sheets formed by SSTNVG strands is very poor. Therefore, the formation of these aggregates is essentially dictated by inter-sheet interactions established within the steric zipper assembly.
More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.
Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more