Skip to main content

Kinetic and Structural Studies on the Interactions of Heparin and Proteins of Human Seminal Plasma using Surface Plasmon Resonance

Buy Article:

$63.00 plus tax (Refund Policy)

Heparin is naturally occurring polysaccharides which interacts with seminal plasma proteins and regulate multiple steps in fertilization process. Qualitative and quantitative information regarding the affinity for heparin-seminal plasma proteins interactions is not generally well documented and there are no reports of a comprehensive analysis of these interactions in human seminal plasma. Such information should improve our understanding of how GAGs especially heparin present in the reproductive tract regulate fertilization. In this study, we use SPR to study interactions of heparin with various seminal plasma heparin-binding proteins (HBPs). HBPs like lactoferrin (LF), fibronectin fragment (FNIII), semenogelinI (SGI) and prostate specific antigen (PSA) all bind heparin with different binding kinetics and affinities. Kinetic data suggests that FNIII binds heparin with a high affinity (KD=3.2 nM), while PSA binds heparin with a micromolar affinity (KD=11.1 μM). Preincubation of SGI with heparin inhibits the binding of SGI to immobilized PSA in a dosedependent manner, while FNIII incubated with heparin binds with an increased affinity to PSA. Solution-competition studies show that the minimum size of a heparin oligosaccharide capable of binding with PSA is greater than a tetrasaccharide, with LF and SGI is larger than a hexasaccharide and for FNIII is larger than an octasaccharide.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Keywords: Binding affinity; Glycosaminoglycans (GAGs); acrosome reaction; heparin; heparin-binding proteins; kinetics; seminal plasma; spermatozoa; surface plasmon resonance

Document Type: Research Article

Publication date: 2012-08-01

More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more