If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Prediction of Nicotinamide Adenine Dinucleotide Interacting Sites Based on Ensemble Support Vector Machine

$63.10 plus tax (Refund Policy)

Buy Article:

Abstract:

Nicotinamide adenine dinucleotide (NAD) plays an important role in cellular metabolism and acts as hydrideaccepting and hydride-donating coenzymes in energy production. Identification of NAD protein interacting sites can significantly aid in understanding the NAD dependent metabolism and pathways, and it could further contribute useful information for drug development. In this study, a computational method is proposed to predict NAD-protein interacting sites using the sequence information and structure-based information. All models developed in this work are evaluated using the 7-fold cross validation technique. Results show that using the position specific scoring matrix (PSSM) as an input feature is quite encouraging for predicting NAD interacting sites. After considering the unbalance dataset, the ensemble support vector machine (SVM), which is an assembly of many individual SVM classifiers, is developed to predict the NAD interacting sites. It was observed that the overall accuracy (Acc) thus obtained was 87.31% with Matthew’s correlation coefficient (MCC) equal to 0.56. In contrast, the corresponding rate by the single SVM approach was only 80.86% with MCC of 0.38. These results indicated that the prediction accuracy could be remarkably improved via the ensemble SVM classifier approach.
More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more