If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Effect of Replacing Phenylalanine Residues by Para-Substituted Phenylalanines on the Aggregation Behavior of Aβ16-22

$63.10 plus tax (Refund Policy)

Buy Article:


The peptide sequence KLVFFAE that spans the region 16-22 in the amyloid peptide Aβ1-40 has the ability to form fibrils or nanotubes in aqueous medium, depending on the conditions of dissolution. Interaction between the phenylalanine residues is presumed to play an important role in the self-assembly of Aβ16-22. We have investigated the importance of these aromatic residues by substituting them with p-chloro-, p-fluoro- and p-methylphenylalanine. Nanostructures different from the parent peptide were obtained with the substituted analogs, both in methanol as well as aqueous conditions (pH 2 and pH 7). Concentration-dependent effects observed in methanol, suggest that intermediate states occur during fibrillation. A balance between the crucial parameters such as charge, hydrophobicity and steric constraints implicated in self assembly, appear to modulate the nanostructure formation.
More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.
Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more