Skip to main content

Deletion Mutant Comprising 198 Residues of BoNT/A Toxin Receptor Binding Domain Retained GT1b Binding Property but Failed to Induce Protective Antibody Response in a Mouse Model

Buy Article:

$55.00 plus tax (Refund Policy)

The most effective protection against toxin is inducing protective immune response through vaccination that will produce neutralizing antibodies. Antibodies will bind to and clear toxin from the circulation before it can enter nerve cells and block neurotransmission and can also be used for development of detection system. In the present study we constructed a deletion mutant of the binding domain (1098-1296) to produce smallest toxin fragment as vaccine candidate against BoNT/A. The BoNT/A-HCC protein was highly expressed in Escherichia coli SG13009 and found to form inclusion bodies. The purified inclusion bodies were solubilized in 6 M guanidine-HCl containing 10 mM β-mercaptoethanol and 20 mM imidazole and the rBoNT/A-HCC was purified and refolded in a single step on Ni2+ affinity column. The purified protein was ∼98 % pure as assessed by SDS–polyacrylamide gel with the yield of 8 mg/L and showed binding to polysialoganglioside (GT1b). The rBoNT/A-HCC at dose of 40 μg/mouse generated high IgG antibody titre with predominance of IgG1 subtype, but failed to protect animals against BoNT/A challenge. Antibody titre in serum was determined by enzyme linked immunosorbent assay and specific binding to rBoNT/A-HCC was demonstrated by surface plasmon resonance (SPR), with a dissociation constant of 0.8 pM.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Botulinum neurotoxin; Clostridium botulinum; Formaldehyde; GT1b; HCC subunit; SPR; Surface plasmon resonance (SPR); antibody isotyping; immune response; lactose-binding motif; light chain; renaturation

Document Type: Research Article

Publication date: 2012-05-01

More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more