Skip to main content

Properties of a Putative Cambialistic Superoxide Dismutase from the Aerotolerant Bacterium Streptococcus thermophilus Strain LMG 18311

Buy Article:

$63.00 plus tax (Refund Policy)


The aerotolerance of the lactic-fermentative bacterium Streptococcus thermophilus is mainly based on the key antioxidant function of superoxide dismutase (StSOD). In this work, the comparison of recombinant StSOD (rStSOD) forms obtained from two different initiation triplets indicated that the enzyme from S. thermophilus strain LMG 18311 spans 201 residues. rStSOD is organised as a homodimer, even though protein aggregates are formed in concentrated solutions. The capability of binding and exchanging Fe or Mn in the active site classifies rStSOD as a putative cambialistic enzyme; the moderate preference for iron is counteracted by a 1.5-fold higher activity measured for the Mn-containing form. The enzyme is thermostable, being its half-inactivation time 10 min at 73.5°C; the energetic parameters of the heat inactivation process are regulated by the level of Mn cofactor. The effect of Mn content on the rStSOD sensitivity towards inhibitors and inactivators was also evaluated. Sodium azide acts as a weak inhibitor of rStSOD and its Mn content does not greatly affect this sensitivity. Concerning the physiological inactivator hydrogen peroxide, the Mn-enriched rStSOD displays a great resistance; a moderate sensitivity is instead observed in the presence of a low Mn content. Contrary to hydrogen peroxide, sodium peroxynitrite is a powerful inactivator, a behaviour enhanced in the Mn-enriched enzyme. All these results were compared with the corresponding data previously reported for the cambialistic SOD from the taxonomically related S. mutans. In S. thermophilus the regulation of the enzyme functions by the Mn content appears less relevant with respect to S. mutans.

Keywords: Aerotolerance; Lactobacillus helveticus; NCBI database; S. pyogenes; Streptococcus thermophilus; cambialistic; enzyme regulation; rStSOD; stress response; superoxide dismutase

Document Type: Research Article


Publication date: March 1, 2012

More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more