Skip to main content

Effects of Salt and Ligand Concentrations on the Thermal Unfolding and Refolding of Halophilic Starch-Binding Domain from Kocuria varians α-Amylase

Buy Article:

$55.00 plus tax (Refund Policy)

The starch binding domain of α-amlylase from moderate halophile was expressed in E. coli with His tag (His- SBD12) and characterized for its halophilic properties. His-SBD12 was stable up to 35°C and showed binding activity, although at reduced level, to amylose even in the absence of NaCl. Both NaCl and specific ligands exhibited insignificant influence on the secondary structure of His-SBD12, but showed significant stabilization effects against thermal unfolding concentration-dependently, showing its halophilic properties. NaCl increased thermal stability of His-SBD12 by 4°C at 0.2 M and 15°C at 2 M, and enhanced refolding rate by ˜7-fold at 0.2 M and ˜170-fold at 2 M. Its specific ligands, β- cyclodextrin (at 3 mM) and maltose (at 470 mM), also stabilized the protein by 11° C, most likely reflecting affinity difference between these two ligands. However, they showed marginal effects on refolding rate. These observations suggest that although binding of NaCl and specific ligands to the native structure can explain their stabilization effects on His- SBD12, it is not a sole factor for modulating their effects on folding of His-SBD12.

No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Chromohalobacter β-lactamase; Halophilic; N-terminal hexa-His-tag; SDS-PAGE; refolding; reversibility; salt concentration; starch binding domain; thermal unfolding; β-cyclodextrin

Document Type: Research Article

Publication date: 2012-03-01

More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more