Skip to main content

Functional Investigation of Conserved Membrane-Embedded Glutamate Residues in the Proton-Coupled Peptide Transporter YjdL

Buy Article:

$63.00 plus tax (Refund Policy)

Abstract:

Proton-dependent oligopeptide transporters (POTs) are secondary active symporters that utilize the proton gradient to drive the inward translocation of di- and tripeptides. We have mutated two highly conserved membraneembedded glutamate residues (Glu20 and Glu388) in the E. coli POT YjdL to probe their possible functional roles, in particular if they were involved/implicated in recognition of the substrate N-terminus. The mutants (Glu20Asp, Glu20Gln, Glu388Asp, and Glu388Gln) were tested for substrate uptake, which indicated that both the negative charge and the side chain length were important for function. The IC50 values of dipeptides with lack of or varying N-terminus (Ac-Lys, Gly- Lys, β-Ala-Lys, and 4-GABA-Lys), showed that Gly-Lys and β-Ala-Lys ranged between ˜0.1 to ˜1.0 mM for wild type and Glu20 mutants. However, for Glu388Gln the IC50 increased to ˜2.0 and >10 mM for Gly-Lys and β-Ala-Lys, respectively, suggesting that Glu388, and not Glu20, is able to sense the position of the N-terminus and important for the interaction. Furthermore, uptake as a function of pH showed that the optimum at around pH 6.5 for wild type YjdL shifted to 7.0-7.5 for the Glu388Asp/Gln mutants while the Glu20Asp retained the wild type optimum. Uptake by the Glu20Gln on the other hand was completely unaffected by the bulk pH in the range tested, which indicated a possible role of Glu20 in proton translocation.





Keywords: GlpT; Glu20; Glu388; POTs; X-ray crystallography; YjdL; ligand binding; ligands; secondary active transport; site-directed mutagenesis

Document Type: Research Article

DOI: https://doi.org/10.2174/092986612799363109

Publication date: 2012-03-01

More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more