Skip to main content

Predicting Thermophilic Proteins with Pseudo Amino Acid Composition:Approached from Chaos Game Representation and Principal Component Analysis

Buy Article:

$55.00 plus tax (Refund Policy)

Comprehensive knowledge of thermophilic mechanisms about some organisms whose optimum growth temperature (OGT) ranges from 50 to 80 °C degree plays a major role for helping to design stable proteins. How to predict function-unknown proteins to be thermophilic is a long but not fairly resolved problem. Chaos game representation (CGR) can investigate hidden patterns in protein sequences, and also can visually reveal their previously unknown structures. In this paper, using the general form of pseudo amino acid composition to represent protein samples, we proposed a novel method for presenting protein sequence to a CGR picture using CGR algorithm. A 24-dimensional vector extracted from these CGR segments and the first two PCA features are used to classify thermophilic and mesophilic proteins by Support Vector Machine (SVM). Our method is evaluated by the jackknife test. For the 24-dimensional vector, the accuracy is 0.8792 and Matthews Correlation Coefficient (MCC) is 0.7587. The 26-dimensional vector by hybridizing with PCA components performs highly satisfaction, in which the accuracy achieves 0.9944 and MCC achieves 0.9888. The results show the effectiveness of the new hybrid method.

No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: AAC; CD-HIT; CGR algorithm; DNA; HIV cleavage sites; MASET; OSH; PCA; PseAAC; SVM; Support Vector Machine; Thermophilic; chaos game representation; mesophilic; principal component analysis

Document Type: Research Article

Publication date: 2011-12-01

More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more