Skip to main content

Dependence of Peptide Self-Association on Intermolecular Interaction by PFGNMR in TFE Aqueous Solution: C-terminal Analogues of NPY as Model Peptides

Buy Article:

$63.00 plus tax (Refund Policy)

Abstract:

We have investigated the dependence of peptide oligomerization on intermolecular interaction in terms of both energetic and structural effect by PFGNMR. Three peptides, NPY[20-36], Pro34-NPY[20-36] and NPY[21-31], which are related to human NPY, were synthesized as models in this work. In contrast to NPY[20-36], both Pro34-NPY[20-36] and NPY[21-31] were found with descendent affinity with TFE cluster and continuous dissociating with increased temperature. The observed results can be accounted by the entropic change with temperature and the varied hydrophobic interactions between species due to the differed structures of peptides from each other. The removal of helical secondary structure or residues from C-terminal region may increase the energetic difference between peptide-peptide self-associating and peptidesolvent binding. This increased energetic difference leads to larger dependence of association-dissociation equilibrium on temperature and entropic increase while dissociating.





Keywords: AM resin; Association state; Fmoc; NMR; NPY; PFGNMR; TFE; hNPY; hydrophobic interaction; intermolecular interaction; neuropeptide Y; pulsed field gradient NMR; salvation

Document Type: Research Article

Publication date: 2011-10-01

More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more