If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Analysis of Proteins in Aerenchymatous Seminal Roots of Wheat Grown in Hypoxic Soils Under Waterlogged Conditions (supplementary Material)

$63.10 plus tax (Refund Policy)

Buy Article:

Abstract:

Hypoxia caused by waterlogging results in a severe loss of crop production. At the primary stage of wheat development, the seminal roots have strategies to survive under hypoxia through alternative metabolism coupling root anatomical modification. The present study used a model system of lysigenous aerenchymatous seminal roots from a representative seedling stage of wheat to elucidate the root physiology in response to soil hypoxia. Seminal roots characteristic with lysigenous aerenchyma tissues were developed in pot cultures for 7 days under two hypoxic conditions, water depths of 15 cm below and 3 cm above the soil surface. Proteins from the roots were separated using two-dimensional polyacrylamide gel electrophoresis and identified using mass spectrometry. The results showed that approximately 345 distinct protein spots were detected by 2-DE, 29 spots changed in the expression levels between the control and two hypoxic plants, and 10 spots exhibited a reproducible up- or down regulated fluctuation. The up-regulated proteins were thought to be involved in alteration in energy and redox status, defense responses and cell wall turnover. These results suggest the effects of soil hypoxia on the activity of the identified up-regulated proteins and their roles in alternative respiration and cell degeneration in wheat in order to gain metabolic adjustment under hypoxia stress.





More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more