Skip to main content

Carboxylated Lysine is Required for Higher Activities in Hydantoinases

Buy Article:

$55.00 plus tax (Refund Policy)

Hydantoinases are industrial enzymes with varying degree of activities on variable substrates to form different products. Although, few of the hydantoinase structures were known recently, the functional details and active site mechanism were not clearly understood yet. In a structure determination effort we reported that Bacillus sp. AR9 hydantoinase contains uncarboxylated lysine in the active site, whereas all the other hydantoinases have a carboxylated active site lysine. Here we describe the importance of carboxylated lysine for differential activities by making lysine mutations as well as carboxylating the lysine in a D-hydantoinase from Bacillus sp. AR9. The lysine to alanine and lysine to arginine mutations showed reduced activities whereas carboxylation of the lysine has enhanced the activity. Theoretical studies involving the calculation of electrostatic potentials for the hydroxide ion between the two metal ions present in the active site suggest that the presence of carboxylated lysine increases the nucleophilicity of the hydroxide.

No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Keywords: Metalloenzyme; TIM-barrel; enzyme activity; lysine modifications; nucleophilicity of water

Document Type: Research Article

Publication date: 2011-07-01

More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more