Skip to main content

Comprehensive Profiling of the Low Molecular Weight Proteins and Peptides in Weak Cation Exchange Beads Human Serum Retentate

Buy Article:

$63.00 plus tax (Refund Policy)

Mass spectrometric profiling using ProteinChip and magnetic beads has rapidly grown over the past years, particularly to generate serum profiles for cancer diagnosis. The molecular weights of these distinguishing peaks are usually under 30 kDa. To identify those low molecular weight proteins and peptides is important for specific assays to be developed and increases biological insight. In this study, low molecular weight proteins and peptides from serum were purified by a combination of weak cation exchange magnetic beads and high performance liquid chromatography. The purified proteins and peptides were analyzed by 1D SDS PAGE, SELDI and LC-MS/MS. 246 proteins were identified from the HPLC fractions by LC-MS/MS. 95(38.62%) proteins were first identified in serum compare with Sys-BodyFluid database. 11(11/96) proteins were documented cancer associated proteins. We also observed about 109 proteins/peptides in SELDI mass spectrum, and 13 of the SELDI features were identified.

No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: EAM solution; HPLC; HUPO plasma; LC-MS/MS; MB-WCX; Mass spectrometry; SDS-PAGE; SELDI-TOF; Serum Samples; Serum proteomics; Sys-BodyFluid; TFA; Weak cation exchange; human serum retentate

Document Type: Research Article

Publication date: 01 May 2011

More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more