Skip to main content

Solution NMR Studies of Aβ Monomer Dynamics

Buy Article:

$63.00 plus tax (Refund Policy)

Abstract:

Aβ is widely recognized as a key molecule in Alzheimer's disease, causing neurotoxicity through Aβ aggregates, Aβ oligomers and fibrils. Aβ40 and Aβ42, composed of 40 and 42 residues, respectively, are the major Aβ species in human brain. Aβ42 aggregates much faster than Aβ40 but the mechanism of such difference in aggregation propensity is poorly understood. Using NMR spin relaxation, we have shown that Aβ40 and Aβ42 monomers have different dynamics in both backbone and sidechain on the ps-ns time scale. Aβ42 is more rigid in C-terminus in both backbone and sidechain while Aβ40 has more rigid methyl groups in the central hydrophobic cluster (CHC: Aβ17-21). These observations are consistent with differences in the major conformations of Aβ40 and Aβ42 monomers derived from replica exchange MD (REMD). To further demonstrate the relevance of dynamics in aggregation mechanism, a perturbation was introduced to Aβ42 in the form of M35 oxidation. After M35 side chain oxidation to sulfoxide, Aβ42 experiences Aβ40-like changes in dynamics. At the same time, M35 oxidation causes dramatic reduction in Aβ42 aggregation rate. These data have thus established an important role for protein dynamics in the mechanism of Aβ aggregation.





Keywords: 2D HSQC spectra; A Monomer Dynamics; A mutants; AD drug discovery; Alzheimer's disease; Amyloid β-peptide; Analytical Ultracentrifugation (AUC); C-terminus; FAD; HFIP; Lipari-Szabo model-free formalism; M35 oxidation; MD Simulation Link; NMR; NOE values; Paramagnetic Relaxation Enhancement (PRE); REMD; Translational Diffusion Coefficient; X-ray crystallography; aggregation; amyloid -peptide; central hydrophobic cluster; dynamics; fibrils; neurotoxicity; solution; solution NMR

Document Type: Research Article

DOI: http://dx.doi.org/10.2174/092986611794653969

Publication date: April 1, 2011

More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.
ben/ppl/2011/00000018/00000004/art00005
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more