If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Synthesis and Bioactivity Evaluation of Dipeptidyl Peptidase IV Resistant Glucagon-like Peptide-1 Analogues

$63.10 plus tax (Refund Policy)

Buy Article:

Abstract:

Glucagon-like peptide -1 (GLP-1) is an incretin hormone displaying glucose-dependent stimulation of insulin secretion and trophic effects on the pancreatic β-cells. However, GLP-1 is rapidly degraded to GLP-1(9-36) by dipeptidyl peptidase-IV (DPP-IV), which removes the N-terminal dipeptide His7-Ala8. The rapid inactivation of GLP-1 in the blood circulation limits its clinical application. Hence, we replaced the enzymatic hydrolyzation position Ala8 with other natural amino acids. The GLP-1 analogues were synthesized rapidly and efficiently under microwave irradiation, using Fmoc/tBu orthogonal protection strategy. Studies on blood-glucose-lowering effect of GLP-1 analogues in vivo were undertaken using 10-week-old male Kunming mice. The metabolic stability was tested by incubation with dipeptidyl peptidase-IV (DPP-IV). Generally, Xaa8-GLP-1 analogues exhibit resistance to DPP-IV degradation in vitro and stronger hypoglycemic effect than GLP-1. This may help to understand the structure-activity relationship of GLP-1 analogues.





Keywords: Glucagon-like peptide-1; hypoglycemic; microwave assisted synthesis; solid phase peptide synthesis

Document Type: Research Article

Publication date: October 1, 2010

More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more