Skip to main content

Prediction of β-Hairpins in Proteins Using Physicochemical Properties and Structure Information

Buy Article:

$63.00 plus tax (Refund Policy)


In this study, we propose a new method to predict β-Hairpins in proteins and its evaluation based on the support vector machine. Different from previous methods, new feature representation scheme based on auto covariance is adopted. We also investigate two structure properties of proteins (protein secondary structure and residue conformation propensity), and examine their effects on prediction. Moreover, we employ an ensemble classifier approach based on the majority voting to improve prediction accuracy on hairpins. Experimental results on a dataset of 1926 protein chains show that our approach outperforms those previously published in the literature, which demonstrates the effectiveness of the proposed method.

Keywords: majority voting; protein supersecondary structure prediction; support vector machine; β-Hairpin

Document Type: Research Article


Publication date: September 1, 2010

More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more