Skip to main content

Gene Ontology-Based Protein Function Prediction by Using Sequence Composition Information

Buy Article:

$55.00 plus tax (Refund Policy)

The prediction of protein function is a difficult and important problem in computational biology. In this study, an efficient method is presented to predict protein function with sequence composition information. Four kinds of basic building blocks of protein sequences are investigated, including N-grams, binary profiles, PFAM domains and InterPro domains. The protein sequences are mapped into high-dimensional vectors by using the occurrence frequencies of each kind of building blocks. The resulting vectors are then taken as input to support vector machine to predict their function based on gene ontology. Experiments are conducted over the subset of GOA database. The experimental results show that the protein function can be predicted from primary sequence information. The method based on InterPro domains outperforms the other building blocks, and gets an overall accuracy of 0.87 and ROC score is 0.93. We also demonstrate that the use of feature extraction algorithms such as latent semantic analysis and nonnegative matrix factorization, can efficiently remove noise and improve the prediction efficiency without significantly degrading the performance. The results obtained here are helpful for the prediction of protein function by using only sequence information.

No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Protein function prediction; basic building block; support vector machine

Document Type: Research Article

Publication date: 2010-06-01

More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more