Skip to main content

Copper (II) – HisAibGly Complex and Its Superoxide Dismutase Activity (Suplementary Material)

Buy Article:

$55.00 plus tax (Refund Policy)

The superoxide anion radical is a highly reactive toxic species produced during metabolic processes. Several copper (II) complexes with peptides are known to show superoxide dismutase (SOD) activity but those having a peptide with a non-natural amino acid are limited. The synthesis of HisAibGly peptide and its complexation with copper (II) ions has been reported. The interaction of the synthetic peptide with Cu(II) was studied by electron spray ionization-mass (ESIMS), circular dichroism (CD), absorption (UV-Vis) and electron paramagnetic resonance (EPR) spectroscopic methods. The solution studies and species distribution were performed by both spectrophotometric and potentiometric methods. The studies were performed at 25 ± 0.1 °C with constant ionic strength (μ = 0.1 M NaNO3) in aqueous solution using Bjerrum- Calvin's pH-titration technique as adopted by Irving and Rossotti for binary systems. The species distribution stidies indicated that the complexation occurred from 3-11 pH and a three nitrogen coordinated species predominates at 8-9 whereas a four nitrogen coordinated species was formed between pH 9-11. The copper-peptide complex was tested for SOD activity using xanthine-xanthine oxidase ‐ nitroblue tetrazolium (NBT) methods.

No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Document Type: Research Article

Publication date: 2010-02-01

More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more