Skip to main content

Inhibition of Viral-Induced Membrane Fusion by Peptides

Buy Article:

$68.00 + tax (Refund Policy)

Enveloped animal viruses fuse their membrane with a host cell membrane in order to deliver their genome into the cytoplasm of the cell and thus initiating infection. This crucial step is mediated by virally encoded transmembrane proteins that, following an appropriate triggering, insert their fusion peptides into the target membrane and, through a cascade of conformational changes, drive the merging of the two apposing membranes. The battle against viruses is ongoing with the constant threat of viruses developing resistance to present drugs and emerging viruses, therefore there is a continuous challenge to improve our defence strategies. Entry inhibitors are currently in development for diverse human and animal viral pathogens, and advances in our understanding on how viral entry proteins undergo conformational changes that lead to entry offer a huge potential for the development of novel therapeutics. This review describes recent advances on viralmediated fusion mechanisms concentrating on the development of peptidic inhibitors of membrane fusion.





Keywords: Membrane fusion; fusion peptide; glycoprotein; heptad repeat; viral fusion peptide; viral inhibitor

Document Type: Research Article

Publication date: 01 July 2009

More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content