Skip to main content

A Unique Mechanism of Chaperone Action: Heme Regulation of Hap1 Activity Involves Separate Control of Repression and Activation

Buy Article:

$63.00 plus tax (Refund Policy)


The Hsp90 and Hsp70 molecular chaperones play important roles in the folding and proper functioning of diverse cellular proteins, including transcriptional regulators and protein kinases. In yeast, several transcriptional regulators and protein kinases are known to be substrates for Hsp90 and Hsp70 molecular chaperones. The yeast heme activator protein Hap1 promotes transcription of many genes in response to heme. It requires Hsp90 and Hsp70 molecular chaperones for its activity to be precisely regulated by heme concentration. The mechanism by which molecular chaperones promote heme regulation of Hap1 activity is distinct from the mechanism by which molecular chaperones promote steroid signaling. Hsp70 and Hsp90 molecular chaperones act separately to promote Hap1 repression in heme-deficient cells and heme activation of Hap1 in heme-sufficient cells. Likewise, distinct Hap1 elements or domains act to mediate Hap1 repression and heme activation separately. In this review, we summarize the current knowledge about the molecular mechanism governing heme regulation of Hap1 activity, and we compare this mechanism to the molecular mechanism by which Hsp90 and Hsp70 molecular chaperones promote the regulation of glucocorticoid receptor, the most extensively studied substrate of Hsp90 and Hsp70 molecular chaperones.

Document Type: Research Article


Publication date: 2009-06-01

More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more